Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti–IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment. (J Allergy Clin Immunol 2016;138:336–49.)

Discard this article on the JACI Journal Club blog: www.jaci-online.blogspot.com.

The 3rd Global Allergy Forum was a “think tank” conference held in July 2015 in Davos, Switzerland. The 3rd Global Allergy Forum was initiated and supported by the Christine Kühne-Center for Allergy Research and Education. This review highlights the results of a discussion of a working group of experts from the field of immunodermatology with the aim to define future research avenues in patients with atopic dermatitis (AD).
The question of whether AD is a systemic disease can be answered by using epidemiologic data and systemic biomarkers of the disease. Concerning epidemiology, it is broadly accepted that AD is associated with other atopic diseases, namely allergic rhinoconjunctivitis, allergic bronchial asthma, and food allergy. Here, sequential disease development is called the atopic march. Recently, other comorbidities of AD have been the focus of epidemiologic studies. These studies report that AD is negatively correlated with different entities of cancer. The DISEASE?

Glossary

ACTINOBACTERIA: A phylum of gram-positive bacteria with high guanine and cytosine content in their DNA. Although understood primarily as soil bacteria, they can be more abundant in fresh water. Actinobacteria is one of the dominant bacterial phyla and contains one of the largest bacterial genera,

BACTERIOIDES: A genus of gram-negative obligate anaerobic bacteria. Bacteroides species are non-endo-pore-forming bacilli and can be either motile or nonmotile, depending on the species. Bacteroides species membranes contain sphingolipids and meso-diaminopimelic acid in their peptidoglycan layer.

BIRBEC GRANULE: Cytoplasmic organelles with a central linear density and a striated appearance solely found in Langerhans cells.

CCL17 (Cys-Cys LIGAND 17): An antimicrobial cytokine that displays chemotactic activity for T lymphocytes but not monocytes or granulocytes. The product of this gene binds to the chemokine receptors CCR4 and CCR8 and plays important roles in T-cell development in the thymus, as well as in trafficking and activation of mature T cells.

CD8 T CELLS: T lymphocytes that kill virus-infected and cancer cells or damaged cells. CD8 T cells express T-cell receptors that can recognize a specific antigen bound to the class I MHC molecule of an infected cell and ultimately kill the target cell.

CD11b: A receptor for complement (C3b), fibrinogen, or clotting factor X (also referred to as integrin alpha M), which mediates inflammation. In human subjects CD11b is strongly expressed on myeloid cells and weakly expressed on natural killer (NK) cells and some activated lymphocytes, as well as on microglia in the brain. In mice the CD11b antigen is expressed on monocytes/macrophages and microglia. To a lower extent, it is expressed on granulocytes, NK cells, CD56 CD-1 cells, and subsets of dendritic cells.

CD11c: A type I transmembrane protein (also referred to as integrin, alpha X [complement component 3 receptor 4 subunit]) found at high levels on most human dendritic cells but also on monocytes, macrophages, neutrophils, and some B cells that induces cellular activation and helps trigger neutrophil respiratory burst.

DAMAGE-ASSOCIATED MOLECULAR PATTERN: Host molecules that can initiate and perpetuate a noninfectious inflammatory response.

DERMATOPHAGOIDES FARINA: A house dust mite known to elicit an allergic response that is more common in drier areas. The European house dust mite (Dermatophagoides pteronyssinus) and the American house dust mite (Dermatophagoides farinae) are two different species but are not necessarily confined to Europe or North America.

ECZEMA HERPETICUM: An eruption caused by viral infection, usually with herpes simplex virus (HSV). This extensive cutaneous vesicular eruption arises from pre-existing skin disease, usually atopic dermatitis (AD). Children with AD have a higher risk of eczema herpeticum, in which HSV type 1 (HSV-1) is the most common pathogen. It is commonly caused by HSV-1 or HSV-2. A similar skin disease can also be caused by coxsackievirus A16 or vaccinia virus.

EOSINOPHIL CATIONIC PROTEIN (ECP): A protein released during degranulation of eosinophils that is related to inflammation and asthma because in these cases there are increased levels of ECP in the sputum and bronchoalveolar lavage fluid.

FcRI: The high-affinity receptor for the Fc region of IgE, an antibody isotype involved in allergic disease and parasitic immunity, that is constitutively expressed on mast cells and basophils and inducible in dendritic cells (mainly atopic dermatitis) and in eosinophils.

FIRMUCUTES: A phylum of bacteria, most of which have a gram-positive cell-wall structure but have recently been defined as a core group of related forms called the low-G species, as well as Streptomyces species, which are 2 different species.

INDOLEAMINE 2,3-DIOXYGENASE 1: Indoleamine 2,3-dioxygenase is a regulatory enzyme produced by some alternatively activated macrophages and other immunoregulatory cells [also used as an immune surveillance strategy by many tumors].

IFN-γ: A cytokine critical for innate and adaptive immunity against viral, some bacterial, and protozoal infections. IFN-γ is produced predominantly by natural killer (NK) and NKT cells as part of the innate immune response and by CD4 T cells and CD8 cytotoxic T-lymphocyte effector T cells once antigen-specific immunity develops.

IL-4: A cytokine that induces differentiation of naïve T0 to Th2 cells and class-switching of IgE in B cells. IL-4 subsequently produces additional systemic TH2-dominated immunity in patients with AD is associated with ulcerative colitis, a chronic inflammatory bowel disease that is corroborated by the common hallmarks of TH2 immunity and an impaired epithelial barrier. Moreover, AD has been shown to be associated with a negative correlation with type 1 diabetes in at least 2 studies. However, the findings of positive correlations of AD with TH1 diseases and negative correlations with TH2 diseases are not clear. Recently, an increased risk of AD has been described in Taiwanese patients with type 1 diabetes. Moreover, a positive correlation has recently been found for patients with AD with rheumatoid arthritis, a disease considered to be TH1/TH17 associated. Similar to psoriasis, adults with AD have an increased risk of cardiovascular disease, heart attack, and stroke. Recent data from a Danish study suggest that the higher incidence of adverse cardiovascular outcomes in patients with severe AD can be explained by an increased burden of comorbidities and detrimental lifestyle behavior.

Taken together, these observations argue for the fact that AD is mainly a TH2-driven systemic disease rather than inflammation limited to the skin. In line with this hypothesis, several TH2-associated serum biomarkers correlate with disease severity, therapeutic response, or both, among them CCL17, IL-31, and eosinophil cationic protein (ECP).
IL-4 in a positive feedback loop. IL-4 is a ligand for the IL-4 receptor that also binds to IL-13, which might contribute to many overlapping functions of this cytokine and IL-13.

IL-5: A major maturation and differentiation cytokine expressed by Th2 cells, type 2 innate lymphoid cells, and eosinophils in mice and human subjects. IL-5 has been shown to play an instrumental role in eosinophilic inflammation in patients with allergic diseases.

IL-6: Implicated in a wide variety of inflammation-associated disease states, this cytokine is involved in maturation of B cells and has been shown to be an endogenous pyrogen capable of inducing fever in patients with autoimmune diseases or infections.

IL-13: A cytokine produced primarily by Th2 cells that is involved in several stages of B-cell maturation and differentiation and is critical to IL-33:

Asthma.

IL-22: A cytokine with important functions in host defense at mucosal surfaces, as well as in tissue repair. It is unique in that it is produced by immune cells, including Th2 cell subsets and innate lymphocytes, but acts only on nonhematopoietic stromal cells, in particular epithelial cells, keratinocytes, and hepatocytes.

IL-23: A cytokine secreted by activated dendritic cells and macrophages. IL-23 functions in innate and adaptive immunity to regulate Th17 cell function and proliferation. In addition, this cytokine induces CD8+ memory T cells to proliferate and produce IL-17. As such, IL-23 has been described as a key cytokine controlling inflammation in peripheral tissues.

IL-25: A cytokine that shares sequence similarity with IL-17 and has been shown to be a proinflammatory cytokine favoring the Th2-type immune response. IL-25 can induce nuclear factor κB activation and stimulate IL-8 production.

IL-31: A cytokine from the IL-6 family of cytokines that is expressed on activated Th2 cells and believed to play a role in the promotion of allergic skin disorders and itch and regulation of other allergic diseases, such as asthma.

IL-33: A member of the IL-1 family that potently drives production of Th2-associated cytokines.

INNATE LYMPHOID CELLS (ILCs): Innate immune cells that belong to the lymphoid lineage but lack a B- or T-cell receptor and thus cannot respond in an antigen-specific manner. ILCs are a recently described group of cells with physiologic functions analogous to those of helper T cells and cytotoxic natural killer cells. They have a role in protective immunity and the regulation of homeostasis and inflammation, and their dysregulation has been shown to lead to immune pathology, such as allergy and autoimmune disease.

LANGERHANS CELLS (LCs): Dendritic cells (antigen-presenting immune cells) of the skin and mucosa containing large organelles called Birbeck granules. They are present in all layers of the epidermis, except the stratum corneum, which protects against infections, and are most prominent in the stratum spinosum.

MicroRNAs: Small noncoding RNA molecules (containing about 22 nucleotides) found in plants, animals, and some viruses that function in RNA silencing and posttranscriptional regulation of gene expression.

NLRP3 INFLAMMASOME: Assembly of the NLRP3 inflammasome complex activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1β, thereby serving a central role in the inflammatory response and in diverse human diseases.

PATHOGEN-ASSOCIATED MOLECULAR PATTERNS: Molecules associated with groups of pathogens that are recognized by cells of the innate immune system. These molecules can be referred to as small molecular motifs conserved within a class of microbes.

PROTEOBACTERIA: A major group (phylum) of gram-negative bacteria. They include a wide variety of pathogens, such as Escherichia, Salmonella, Vibrio, Helicobacter, Yersinia, and many other notable genera.

Th1 CELLS: A lineage of CD4+ effectector T cells that promote cell-mediated immune responses and are required for host defense against intracellular viral and bacterial pathogens. Th1 cells secrete mainly IFN-γ, IL-2, and TNF-α/β. These cytokines promote macrophage activation, nitric oxide production, and cytotoxic T-lymphocyte proliferation, leading to the phagocytosis and destruction of microbial pathogens. Exaggerated Th1 responses have been found to be associated with autoimmune diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and type 1 diabetes.

Th2 CELLS: A distinct lineage of CD4+ effector T cells that secrete IL-4, IL-5, IL-9, IL-13, and IL-17. These cells are required for humoral immunity and play an important role in coordinating the immune response to large extracellular pathogens.

Th17 CELLS: A subset of activated CD4+ T cells that are responsive to IL-1 receptor 1 and IL-23 receptor signaling. They are regulated by the IL-6/signal transducer and activator of transcription 3/retinoic acid–related orphan receptor γt lineage control and produce the cytokines IL-17A, IL-17F, IL-17AF, IL-21, IL-22, IL-26 (human), GM-CSF, macrophage inflammatory protein 3α, and TNF-α. Th17 cells act as a bridge between adaptive and innate immunity, where they promote neutrophil activation, immunity to pathogens, and inflammation.

Th22 CELLS: A subset of T cells that produce the cytokine IL-22 that express the skin-homing chemokine receptors CCR4 and CCR10, reside in the normal skin, and are enriched in the lesional skin of inflammatory skin diseases, indicating the importance of IL-22 in skin homeostasis and pathogenesis of skin diseases.

THYMIC STROMAL LYMPHOPHOETIN: A cytokine that stimulates the maturation of T cells through activation of antigen-presenting cells, such as dendritic cells and macrophages.

TNF-α: Secreted primarily by macrophages, this cytokine’s primary role is the regulation of immune cells. Moreover, it is involved in the regulation of a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, lipid metabolism, and coagulation.

TOLL-LIKE RECEPTORS: A class of proteins usually expressed in sentinel cells, such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have breached physical barriers, such as the skin or intestinal tract mucosa, they are recognized by Toll-like receptors (TLRs), which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13, although the latter 2 are not found in human subjects.

TYPE 1 INTERFERON: A subgroup of interferon proteins that help regulate the activity of the immune system. All type I interferons bind to a specific cell-surface receptor complex known as the IFN-α receptor (IFNAR) that consists of the IFNAR1 and IFNAR2 chains. They are responsible for inhibition of viral replication inside cells in addition to several cellular regulatory roles.

TYPE 2 INNATE LYMPHOID CELLS (ILC2s): Innate lymphoid cells capable of producing the Th2 cytokines IL-4, IL-5, IL-9, and IL-13 in response to helminth infection that have been implicated in the development of allergic lung inflammation. They require IL-7 for their development, which activates 2 transcription factors required by these cells: retinoic acid–related orphan receptor α and GATA3.

The Editors wish to acknowledge Krissey Bielewicz, MS, for preparing this glossary.

Differences in cytokine patterns in the nonallergic variant are discussed below in the context of endotypes in patients with AD. In addition, many intracellular molecular mechanisms, including microRNAs, play a role in pathogenesis, emphasizing the complexity of the disease with a systemic immune/inflammatory dysfunction and its interaction with skin keratinocytes.18,19
COMPARATIVE FINDINGS IN PATIENTS WITH AD AND PSORIASIS

Similar to psoriasis, AD skin lesions show epidermal hyperplasia, T-cell and dendritic cell (DC) infiltrates, and increased production of inflammatory mediators. However, a strong negative correlation and antagonistic clinical course were observed with the Th17-driven disease psoriasis, and the latter can even be treated with the IL-4–targeting Th17-driving cytokine IL-23. In patients with psoriasis, increasing knowledge of inflammatory pathways led to bedside-to-bench pathogenic dissection and translational testing of therapeutics, with psoriasis being considered perhaps the best model of translational medicine in the field of dermatology. These therapeutic developments helped cement psoriasis as a Th17/IL-23 and TNF-α–associated disease with multiple approved biological medical products and many more in early- or late-phase clinical trials. The growing mechanistic understanding of AD, clinical subclassifications, and better resolution of tissue inflammation with specific compounds antagonizing AD mediators are leading to a similar translational revolution in patients with AD.

In addition, these developments are guiding a paradigm shift in the interpretation of disease pathogenesis and further accelerating the development of new therapeutics. These studies, as well as studies with broad immune suppressants, also identified biomarkers of therapeutic response that are currently implemented in clinical trials. These trials will not only inform about key disease features but also shed light on differences and similarities in therapeutic responses between various AD endotypes.

IMMUNOLOGY OF ENDOTYPES IN PATIENTS WITH AD

Although AD is primarily defined by clinical criteria, it is recognized as a complex disease with several distinct variants distinguished based on age of onset, race, acute versus chronic course, therapeutic response, and infectious or allergic/irritant triggers. In addition to some differences in clinical characteristics (eg, pediatric vs adult AD), it is now established that various AD subtypes can also be distinguished based on their molecular and cellular characteristics.

For a personalized medicine approach that can be implemented in future therapeutic trials and treatment schemes for AD, it is important to define AD endotypes. In addition to the clinical phenotype, future stratifications of patients with AD should also account for differing immune polarizations and genotypes of skin barrier proteins, such as filaggrin (FLG). An early distinction relates atopy-related and unrelated AD: 80% of patients with AD manifest with high levels of serum IgE and a strong atopic background. Patients with the nonallergic variant of AD have normal molecular Asian AD phenotype was described to present a mixed AD. Of note, similar responses to dupilumab, an anti–IL-4 receptor antibody suppressing the Th2 pathway, were observed in patients with both intrinsic and extrinsic AD. Ongoing and future clinical trials with IL-17–, IL-23–, and IL-22–targeted treatments (eg, anti–IL-22/ILV-094 and anti–IL-23p40/ustekinumab) should clarify differences in therapeutic responses between these subtypes.

Population studies suggested that AD among different races (eg, Asian and African American subjects) might have phenotypic differences. Prominent Th17 activation has been observed in the blood of Asian patients with AD, and increased IL-17 staining was found in acute AD skin lesions. The molecular Asian AD phenotype was described to present a mixed phenotype between European/American patients with AD and psoriasis, with highly atypical features for AD, such as parakeratosis, and a unique cytokine profile featuring simultaneous activation of the Th2 and Th17 axes. The more “psoriasiform” phenotype of Asian patients with AD provides a rationale for including IL-17/IL-23–targeting therapeutics that are successfully used or tested in patients with psoriasis in the treatment of AD. The relative pathogenic contribution of the Th2 and Th17 axes in Asian patients remains to be determined through clinical trials with selective antagonists against these pathways.

A recent phase II study with ustekinumab, an antibody directed to the common p40 chain of IL-12 and IL-23, showed clear molecular effects in patients with AD. However, clinical outcomes were not significant from profound improvements in the placebo arm, which might have been due to background use of topical glucocorticosteroids.

COMPARATIVE FINDINGS ON IMMUNE PARAMETERS IN CHILDHOOD VERSUS ADULT AD

Although there is increasing prevalence of AD in adults, the pediatric population has the highest prevalence (15% to 25%) worldwide. Most children with early AD presentation in infancy will outgrow their disease before adolescence, but 25% or more (often those with more severe AD) will persist into adulthood. Thus it is important to define differences and similarities between early pediatric AD and chronic disease in adults, as well as factors that determine disease persistence. A recent publication sheds light on mechanisms involved in initiation of AD in children. Although AD is established in adults as a disease with polarized Th2 and Th17 cytokine activation in both skin and blood, early-onset AD begins as a Th2 disease. Furthermore, in early pediatric AD the Th17 imbalance is confined to skin-homing (cutaneous lymphocyte antigen–positive) T-cell subsets. In adults T-cell activation extends into systemic/cutaneous lymphocyte antigen–negative and CD8+ T cells, as well as into IL-22–producing T cells. These data provide critical insights to understand initial pathogenic mechanisms in patients with early AD and direct novel treatments toward children. Additionally, early-onset AD showed very low Th1 activation. Thus the reduced counterregulation by Th1 T cells in children...
might allow excess Th2 development in early-onset AD (Fig 1). Future studies should assess the contribution of changes in Th1/Th2 ratio and other regulatory elements in allowing disease persistence to adult AD.

THE MICROBIOME IN PATIENTS WITH AD

The skin is colonized by myriads of microorganisms shortly after birth, which total approximately 10^{10} bacteria covering the whole skin. These skin-associated microbial populations have become a major research interest because the microbiome closely interacts with the local immune system in health and disease. The majority of bacterial species on the skin are classified into 4 phyla (ie, Actinobacteria, Firmicutes, Bacteroides, and Proteobacteria). Interestingly, the skin microbiota differs greatly between the topographic locations "moist, dry, or sebaceous," supporting the concept of cutaneous habitats determining microbe composition by the cutaneous milieu. At moist areas, Staphylococcus and Corynebacterium species are abundantly detectable, whereas sebaceous sites harbor mostly propionibacteria. However, it should be noted that approximately 50% of the sequence reads in skin swabs do not map to any of the reference genomes or cannot be assigned a function on the basis of known genes, leaving large amounts of skin microorganisms unclassifiable. In addition to the well-known coincidence of lesional atopic skin with Staphylococcus aureus colonization, detailed skin analyses have extended these findings by showing a general loss of microbial diversity during acute flares in patients with AD. Diversity is restored after successful anti-inflammatory treatment. This is in line with other studies showing that atopic subjects had lower environmental biodiversity in the surroundings of their homes and significantly lower generic diversity of Gammaproteobacteria on their skin compared with healthy subjects. In addition, aberrant interactions between gut microbes and the intestinal immune system have been implicated, such as the association of enrichment of a major gut species Faecalibacterium prausnitzii with AD. In addition, the severity of AD was shown to inversely correlate with intestinal microbiota diversity and
butyrate-producing bacteria.57 Overall, these findings raise the question of whether an altered microbial diversity in patients with AD is a cause or merely a consequence of skin inflammation.

Data from animal studies recently showed a loss of microbial diversity with abundant *S. aureus* colonization in mouse models of skin barrier disruption.58,59 Those mice ultimately had an initially T cell-driven skin inflammation that resembles that of human AD. In contrast, antibiotic treatment fully restored cutaneous bacterial diversity, with subsequent healing of the eczema. These data indicate that skin’s microbiome might play an important role in the development and promotion of T cell-driven skin inflammation in AD. We are just at the beginning of understanding the complex interactions between skin-associated microbial populations and the local immune system. However, it might be intriguing to manipulate the diversity of the microbiome as part of a prophylactic and therapeutic approach in the management of AD.60

DEVIAION OF THE INNATE IMMUNE SYSTEM IN PATIENTS WITH AD

Both the diversity of the microbiota on the skin and *S. aureus* overgrowth are sensed and regulated by the innate immune system. One important group of regulators are antimicrobial peptides (AMPs) produced by the skin and bacteria to stabilize bacterial communities and prevent and fight infections.61 Compared with T_{Hel}- and T_{H17}-associated inflammation, T_{H2}-associated inflammation in patients with AD does not upregulate some (but not all) AMPs based on T_{H2} cytokine–mediated suppression.62,63 AD skin lesions harbor staphylococci as predominant bacteria, and the failure in AMP regulation might contribute to the loss of diversity of cutaneous microbiota.54 Among other stimuli, this leads to a predominance of *Toll-like receptor* 2 ligands on AD skin.64 As a response to environmental signals, epithelial *IL-25*, *IL-33*, and *thymic stromal lymphopoietin* (TSLP) are upregulated. These epithelial cytokines are associated with accumulation of type 2 innate lymphoid cells (ILC2s), which are discussed to play a role in AD. They express skin-homing receptors and infiltrate the skin after allergen challenge, where they produce the type 2 cytokines *IL-5* and *IL-13*.65 In addition, ILC2 accumulation in patients with AD might influence DCs to further T_{H2} phenotypes in T cells.66 Importantly, DCs under the influence of T_{H2} cytokines also lose the potential to produce anti-infectious IL-10 in response to bacteria, which in animal models turned self-limiting dermatitis into chronic cutaneous inflammation.67-69 Among other stimuli, this leads to a predominance of *Toll-like receptor* 2 ligands on AD skin.64

Innate sensing of potent Toll-like receptor 2 ligands further boosts inflammation, upregulating innate cytokines, such as *IL-6*,69 a cytokine that, if targeted by blocking antibodies in patients with AD, leads to AD resolution but also susceptibility to infection.70 IL-6 in patients with AD induced by *S. aureus* products might in part be responsible for the T_{H17}-associated signatures in patients with AD and has systemic consequences, among them the induction of myeloid-derived suppressor cells (MDSCs), which, when recruited to the skin in an attempt to terminate inflammation, lead to suppression of anti-infective immune responses, allowing, for example, herpes viruses to spread.71 Thus a large part of the deviation of the innate immune system in patients with AD can be interpreted as secondary to a weak epidermal barrier and a predominance of T_{H2}-associated inflammation. Because the epidermal barrier is also negatively regulated by many T_{H2} cytokines,71 therapeutically blocking the T_{H2} bias with drugs, such as dupilumab, will also correct much of the deviation of the innate immune system found in patients with AD, such as AMP inhibition and suppression of microbe-induced IL-10 responses. As a consequence, T_{H2} blockade will also correct the loss of microbial diversity on AD skin, also reducing the proinflammatory *pathogen-associated molecular patterns* orchestrating AD chronic inflammation by means of innate immune sensing.72

T LYMPHOCYTES AND DCs AS MAJOR CELLULAR PLAYERS IN PATIENTS WITH AD

One of the most striking features of AD is the presence of T cells in the affected skin (Fig 1). Although their numbers are already moderately increased in the dermis in nonlesional sites, in lesional AD skin a marked influx of T cells is found in both the dermis and epidermis, leading to keratinocyte apoptosis and spongiosis in the epidermis between the stratum corneum and stratum basale (Fig 1).53,73 In the atopic patch test model T cells in the skin display an initial T_{H2} polarization, with increasing populations of T_{H1} cells in patients with chronic AD.75-79 The high proportion of T_{H2}-polarized T cells appears to be a key factor in patients with allergic inflammation,79 and pharmacologic inhibition of T_{H2} cytokine receptors by dupilumab is rapidly improving AD, irrespective of the effect on IgE.77 T_{H2} cells are also the target cells of specific immunotherapy,81,82 which has shown modest efficacy in patients with AD in some clinical studies.83

Recently, the paradigm of an exclusive T_{H2} polarization has been questioned because T_{H1} and T_{H2}2 polarizations have been described as well.84,85 Next to CD4 T cells, CD8 T cells are found also in AD skin. These cells are potent releasers of *IFN-γ*, *IL-13*, and *IL-22* and are speculated to be relevant for the early responses in patients with AD.86,87 There is no doubt that allergen-specific T cells infiltrate the skin in sensitized patients, but autoreactive T cells and T cells detecting microbial antigens were identified in a recent study as possibly driving cells in cutaneous inflammation in subpopulations of patients with AD as well, some of them also having specific IgE to those antigens.78-90

DCs comprise morphologically and functionally defined subsets of cells specialized in antigen uptake and presentation. There is a dynamic DC subset distribution in the different phases of inflammation.91 Resident epidermal DCs are Birbeck granule–containing *Langerhans cells* present in the lesional and nonlesional skin of patients with AD. In contrast to non-AD skin, they express high-affinity IgE receptors (*FceRI*) and are critical for initiation of immune responses to protein antigens penetrating the epidermis.92 IgE on FceRI facilitates allergen uptake to a great extent through DCs.93 Exaggerated *indoleamine 2,3-dioxygenase* 1 expression and activity in Langerhans cells in patients with AD might serve as a potential predictive biomarker for high risk of *eczema herpeticum*.94

Another DC subset, inflammatory dendritic epidermal cells, infiltrates the early AD lesions within 48 hours after induction of AD lesions with an atopy patch test.95 Inflammatory dendritic epidermal cells do not contain Birbeck granules; express *CD11b, CD11c*, and high levels of FceRI in AD lesions;96 and are a treatment target for topical and systemic therapy of AD.97 Plasmacytoid DCs are present in normal human skin and specialize in production of type 1 interferons on stimulation with viral DNA or RNA. Plasmacytoid DC numbers are increased in patients with cutaneous lupus erythematosus but almost completely depleted in patients with AD because of T_{H2}
cytokine–induced plasmacytoid DC apoptosis, which contributes to the eczema herpeticum susceptibility seen in patients with AD.98

EOSINOPHILS, MAST CELLS, BASOPHILS, INNATE LYMPHOID CELLS, B LYMPHOCYTES, AND THEIR ROLE IN AD

The skin lacks eosinophils under physiologic conditions but is infiltrated by eosinophils in patients with a broad spectrum of cutaneous disorders, including AD.99 Tissue eosinophilia is often associated with increased blood eosinophil levels and correlates with disease severity.100 Eosinophils are often activated, leading to extracellular granule protein deposition in the skin.101,102 Thus far, the role of eosinophils in the pathogenesis of AD remains uncertain. It seems possible that eosinophils contribute to host defense against invading microbes through the defective skin barrier by generating extracellular eosinophil traps, regulating the immune response, and/or remodeling.103-105

In contrast to eosinophils, normal human skin contains mast cells. In patients with AD, mast cell numbers are increased in skin lesions. However, whether mast cells play a role in the pathogenesis of AD remains unclear. Skin mast cells also produce IL-17,106 IL-22,106 and IL-31,107 suggesting that mast cells contribute to the pathogenesis of AD through cytokine production. AD also seems to be associated with basophil recruitment and activation.108 Recently, it has been demonstrated that basophils form extracellular traps in patients with AD109 that can exhibit antibacterial activity.110

As discussed above, in the context of the innate immune mechanism in patients with AD, ILC2s are currently discussed to play a role in the disease. They express skin-homing receptors and infiltrate the skin after allergen challenge, where they produce the type 2 cytokines IL-5 and IL-13.65 Focus has recently been placed on ILC2s, suggesting a role for these cells in subjects with FLG mutations.4,65 In addition to T cells and innate lymphoid cells, systemic B-cell abnormalities have been reported in patients with AD.111,112

ROLE OF SPECIFIC IGE IN PATIENTS WITH AD

The course of AD is characterized by exacerbations and remissions. It is influenced by individual exogenous trigger factors, such as inhalant allergens, food allergens, or autoallergens; microbial factors; or climatic conditions.89,113-116 Because the vast majority are sensitized through specific IgE antibodies to inhalant or food allergens, the determination of IgE antibodies to inhalant allergens is common in clinical practice. However, their effect on the clinical course of AD is often not clear. In a 10-year follow-up study, such IgE measurements did not predict later manifestation of AD.117 In general, specific IgE is only the witness of a sensitization, but it does not mean that it is clinically relevant. With regard to the patient’s history, a higher specificity compared with skin prick and in vitro IgE testing has been demonstrated for the atopy patch test with aeroallergens in patients with AD.118 However, the gold standard of proving a diagnostically relevant sensitization is a challenge test with allergens, eg, with birch pollen–related food119 or with grass pollen120 allergens, as has been published in adults with AD.

Worsening of AD on allergen challenge supports the hypothesis that specific IgE might play a critical role in cutaneous inflammation in the activation of mast cells and DCs through high-affinity Fc receptors. IgE-mediated histamine release from cutaneous mast cells can aggravate AD through the itch-scratch cycle, but mast cell degranulation is not always detectable in AD lesional sites or after atopy patch testing.121 Still, increased cutaneous inflammation, mediated through histamine receptors on T lymphocytes, antigen-presenting cells, and keratinocytes, is probable.122 Induction of eczematous lesions in the skin in the atopy patch test is strongly related to IgE-bearing DCs.96,123 This might be explained by IgE-facilitated allergen presentation by DCs and activation of DCs through high-affinity Fc receptors in the skin.93,124

Some data indicate a less clear relationship between allergen-specific IgE and AD. Comparing extrinsic and intrinsic AD demonstrated a similar disease pathomechanism independent of IgE.38 Blocking IgE with omalizumab does not often improve AD, but this might be difficult to interpret because of the high levels of IgE in patients with eczema. Blocking receptors for IL-4 and IL-13 with dupilumab has been described to lead to improvement of AD well before IgE levels change. Moreover, dupilumab is equally effective in patients with intrinsic and extrinsic AD.125 Overall, there is a strong relationship between IgE and AD, but the functional pathomechanism of IgE in patients with AD still needs further examination.

IMMUNE MECHANISMS AND THEIR INTERACTION WITH FLG AND OTHER SKIN BARRIER PROTEINS

FLG is a molecule that might in part explain the disease in a subgroup of patients with AD.126 It has been shown that up to 50% of patients with AD carry FLG loss-of-function mutations. FLG is a structural protein that builds up the outer epidermal barrier through aggregation of intermediate filaments. This is considered a key step in establishing the structure and function of the stratum corneum. Moreover, FLG influences cell differentiation, and processed FLG contributes to natural moisturizing factors, which are important for skin hydration. Recently, it was found that FLG inhibits antigen formation by house dust mite (HDM)–derived phospholipase, indicating that FLG can directly affect allergens.126 There is evidence that a lack of FLG breakdown products favors transepidermal water loss, allergen penetration, and skin colonization with S aureus. This explains why FLG loss-of-function mutations are associated with higher total IgE levels, more sensitizations, and a more severe course of AD, as well as allergic asthma.127

During the last 2 decades, interaction of the immune system with the skin barrier has been addressed in numerous studies. Several cytokines, such as IL-4, IL-31, and IL-33, have been described to negatively affect the FLG expression in keratinocytes (Fig 1).71,128,129 Later, it was shown that other skin barrier proteins, such as FLG2, hornerin, or loricrine, are also critically regulated by Tgfβ mediators that can be overexpressed in the skin of patients with AD. These findings suggest that lesional skin is always associated with a disturbed skin barrier in patients with AD.130,131 In addition to the stratum corneum barrier, the tight junction barrier is located in the granular layer of the epidermis and contributes to the barrier dysfunction and immune dysregulation observed in patients with AD.132

Neonatal skin barrier dysfunction is predictive of food allergy and supports the concept of transcutaneous allergen sensitization.135 Findings of worsening of the skin, mainly on air-exposed
skin sites, on aeroallergen challenge in sensitized patients with AD suggest that because of dysfunction of the epidermal barrier, allergen exposure is followed by direct penetration of the allergen into the skin in patients with AD.

PRURITUS IN PATIENTS WITH AD AND THE IMMUNOLOGY BEHIND IT

Chronic pruritus defined by persisting itch lasting longer than 6 weeks is considered the dominant clinical feature of AD, representing a major burden for affected patients. Thus the understanding of the underlying mechanisms of chronic pruritus in patients with AD is of great importance not only to understand the disease course but also to develop new therapeutic strategies to provide relief for this dominant clinical symptom. Pruritus is a sensory phenomenon mediated by both histamine-dependent and histamine-independent mechanisms (Fig 2). Chronic pruritus in patients with AD seems independent of histamine effects mediated through histamine 1 receptors; the role of histamine 4 receptors on pruritus in dermatitis is currently being discussed. The signal for pruritus is transmitted by cutaneous nerve fibers (CNFs) located within the dermis and epidermis in close proximity to resident cells, such as fibroblasts, keratinocytes, mast cells, and Langerhans cells. These CNFs form varicose-like neural webs at their terminal end, allowing nonsynaptic transmission of neurotransmitters and neuropeptides. Patients with AD can have nerve fiber alterations in their skin. Several mediators induce nonhistaminergic pruritus through receptors, such as transient receptor potential (TRP) A1, proteinase-activated receptors 2 and 4, and others. Mediators for pruritus can derive from endogenous or exogenous sources. *Staphylococcus aureus* and HDM, 2 triggers for AD exacerbation, are able to induce pruritus through proteases. TSLP and IL-31 are recently published endogenous mediators for the induction of chronic pruritus in patients with AD. Epithelial cells are the major source of TSLP in the skin, and TSLP expression of keratinocytes in AD skin is highly upregulated. Overexpression of TSLP in mice provokes robust pruritus. TSLP induces itch directly through activation of cutaneous sensory neurons by means of TRPA1 activation. IL-31 is primarily produced by Th2 cells and signals through the IL-31 receptor, which is expressed on keratinocytes and CNFs (Fig 1).

Recent data suggest that IL-31–mediated pruritus requires coexpression of TRPVI and TRPA1 on CNFs. IL-31 is highly expressed in pruritic AD lesions, and IL-31 serum levels correlate with AD severity and itch sensation in patients with cutaneous T-cell lymphoma. Because IL-31 induces delayed onset of pruritus, it can actually be caused through an indirect mechanism.

EFFECT OF ALLERGENS AND ENVIRONMENTAL FACTORS ON PATIENTS WITH AD

Environmental factors can influence the cause of AD. Climatic and anthropogenic factors, such as indoor and outdoor air pollutants and psychosocial stress, exert their greatest influence during prenatal and early postnatal life, causing enhanced predisposition for AD development (for an overview, see Table I). In addition, other factors, such as reduced environmental UV exposure or high water hardness, are controversially discussed as possible drivers of the manifestation of AD.

Exposure of sensitized patients to food allergens or aeroallergens can cause flare-ups and exacerbation of AD in patient subgroups. The most relevant food allergens include milk, egg white, soy, and peanut. Food allergen intake can lead to
exacerbation or persistence of AD, mostly in children with AD.
Moreover, even sensitization through barrier-disrupted skin is
discussed.158 Two recent clinical studies suggested that early-life
exposure of the skin to peanut in household dust might increase
the risk for sensitizations and peanut allergy in children carrying
FLG loss-of-function mutations or those with AD.159,160

<table>
<thead>
<tr>
<th>TABLE I. Studies on environmental factors affecting AD development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure type (associated factor)</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Climatic factors (humidity, air temperature, UV index)</td>
</tr>
<tr>
<td>Indoor air pollutants (VOCs)</td>
</tr>
<tr>
<td>Indoor air pollutants (tobacco smoke)</td>
</tr>
<tr>
<td>Indoor air pollutants (tobacco smoke, PM2.5)</td>
</tr>
<tr>
<td>Indoor air pollutants (total VOCs)</td>
</tr>
<tr>
<td>Outdoor air pollutants (CO)</td>
</tr>
<tr>
<td>Outdoor air pollutants (ozone)</td>
</tr>
<tr>
<td>Psychosocial stress (job strain)</td>
</tr>
<tr>
<td>Social stress</td>
</tr>
<tr>
<td>Social stress</td>
</tr>
</tbody>
</table>

CLLA, Cutaneous lymphocyte antigen; ISAAC, International Study of Asthma and Allergies in Childhood; PM2.5, fine particulate matter; TSST, Trier social stress test; VOC, volatile organic chemicals.

<table>
<thead>
<tr>
<th>TABLE II. Novel immunologic approaches in the therapy of AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>T₉2 immunity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CD20</td>
</tr>
<tr>
<td>IL-31</td>
</tr>
<tr>
<td>IL-31R</td>
</tr>
<tr>
<td>TSLP</td>
</tr>
<tr>
<td>CRTH2</td>
</tr>
<tr>
<td>Histamine 4 receptor</td>
</tr>
<tr>
<td>Non-T₉2 immunity</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

CRTH2, Chemokine receptor–homologous molecule expressed on T₉2 lymphocytes; EASI, Eczema Area and Severity Index; IL-4Rα, IL-4 receptor α; IL-31R, IL-31 receptor; NK-1R, neurokinin 1 receptor; PDE-4, phosphodiesterase-4.
The aeroallergens most relevant to AD are HDM and pollen. A new marker allergen for AD in patients with HDM allergy could be Der p 11, a paramyosin present in mite bodies.161 HDM allergens activate an array of pathogen-associated molecular patterns and \textit{danger-associated molecular patterns}. Lately, the S100 proteins have moved into focus because lesional skin of patients with AD displays markedly increased levels of these proteins.36,162 In a recent \textit{in vitro} study \textit{Dermatophagoides farinae} extracts directly induced S100A8 and S100A9 in human primary keratinocytes, leading to upregulation of IL-33 through the S100A8/A9 receptor for advanced glycation end-products (RAGE), thereby amplifying T\textsubscript{H2}-driven cutaneous inflammation.163

The clinical phenomenon of eczema flare-ups during the pollen season in pollen-sensitized patients with AD has spawned the concept of pollen-induced contact dermatitis. However, the inflammatory infiltrate used in pollen patch tests is typical for type I hypersensitivity reactions and mimics the inflammatory infiltrate in lesional AD skin.160,164 Notably, in a recent experimental, placebo-controlled study timothy grass pollen exposure induced eczema flare-ups in adults with AD sensitized to grass pollen, providing direct evidence for a role of pollen in triggering AD.120

Apart from being a carrier of allergens, pollen grains harbor various substances that signal danger to the tissue.166 Ragweed pollen extracts, for example, activate the \textit{NLRP3 inflammasome},167 and NLRP3 was recently implicated in T\textsubscript{H2} differentiation.168 To what extent innate immune activation is relevant for eczematous reactions to pollen remains to be established.

EFFECT OF IMMUNE DEVIATION ON DIAGNOSIS AND THERAPY IN PATIENTS WITH AD

Increasing knowledge on the pathogenesis of AD results in novel diagnostic and therapeutic strategies. Current diagnostic gold standards are clinical phenotype and histology, but they neither are valid for all phenotypes of AD nor do they predict therapeutic benefit at the individual patient level. Thus new molecular classifiers are needed. Several attempts to define classifiers of varying size and predictive value were made.169,170 Recently, an accurate classifier to distinguish AD from psoriasis consisting of only 2 genes was proposed.23 This might stand as an example for customized and easy-to-use molecular classifiers answering specific questions, eventually including natural clinical course and risk for comorbidities. A prerequisite for successful use of such classifiers is a precise clinical phenotyping of this heterogeneous disease.

The heterogeneity of AD is also reflected by the therapeutic outcome of distinct specific immune-targeting therapies. Allergen immunotherapy has only a modest efficacy on AD.15,171 Nevertheless, in recent years, the main therapeutic concepts, besides repairing the epidermal barrier or influencing the microbiome, target acute-phase inflammation or T\textsubscript{H2} immunity (Table II).25,27,47,70,172,183 A breakthrough came with dupilumab, an antibody targeting the IL-4 receptor \(\alpha\) chain, which is the overall most efficient therapy on the basis of available data from clinical studies.25,174 However, a subgroup of patients with AD did not benefit from dupilumab treatment. It can be proposed that AD in such nonresponders is driven primarily by epidermal barrier impairment, autoallergy, or non-T\textsubscript{H2} immunity. Thus those patients could benefit from therapies targeting acute-phase inflammation, such as the anti–IL-6 receptor tocilizumab, even if such therapies seem to come with higher side effects than T\textsubscript{H2}-targeting therapies.70 Hence objective biomarkers predicting the optimal therapeutic concept at the individual patient level are needed. Taken together, the numerous therapeutic strategies of AD reflect its heterogeneity and complex pathogenesis. A precise stratification of individual patients will be key to future success.

REFERENCES

5. Abuabara K, Margolis D. Do children really outgrow their eczema, or is there more than one eczema? J Allergy Clin Immunol 2013;132:1139-49.

25. Quarta M, Knapp B, Garzoni N, Matti S, Pullabhatla V, Pennino D, et al. In-
traindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 2014;6:244ra90.

27. Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupi-

28. Hamilton JD, Suarez-Farinars M, Dhingra N, Cardinale I, Li X, Kostic A, et al. Dupi-
lumab improves the molecular signature in skin of patients with moderate-

32. Malajian D, Guttman-Yassky E. New pathogenic and therapeutic paradigms in

33. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis:

34. Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular tax-

